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Abstract

Mechanical ventilation is a life-supportive therapy, but can also promote damage to
pulmonary structures, such as epithelial and endothelial cells and the extracellular
matrix, in a process referred to as ventilator-induced lung injury (VILI). Recently, the
degree of VILI has been related to the amount of energy transferred from the
mechanical ventilator to the respiratory system within a given timeframe, the so-
called mechanical power. During controlled mechanical ventilation, mechanical
power is composed of parameters set by the clinician at the bedside—such as tidal
volume (VT), airway pressure (Paw), inspiratory airflow (V′), respiratory rate (RR), and
positive end-expiratory pressure (PEEP) level—plus several patient-dependent
variables, such as peak, plateau, and driving pressures. Different mathematical
equations are available to calculate mechanical power, from pressure-volume (PV)
curves to more complex formulas which consider both dynamic (kinetic) and static
(potential) components; simpler methods mainly consider the dynamic component.
Experimental studies have reported that, even at low levels of mechanical power,
increasing VT causes lung damage. Mechanical power should be normalized to the
amount of ventilated pulmonary surface; the ratio of mechanical power to the
alveolar area exposed to energy delivery is called “intensity.” Recognizing that
mechanical power may reflect a conjunction of parameters which may predispose to
VILI is an important step toward optimizing mechanical ventilation in critically ill
patients. However, further studies are needed to clarify how mechanical power
should be taken into account when choosing ventilator settings.
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Background
Mechanical ventilation is a supportive therapy used to maintain respiratory function

and reduce work of breathing during surgical intervention and in critically ill patients

with and without acute respiratory distress syndrome [1, 2]. However, mechanical ven-

tilation can itself damage the lungs, causing what is known as ventilator-induced lung

injury (VILI); the severity of VILI depends on the ventilator settings [3]. Some factors

are directly set on the ventilator by the clinician, such as tidal volume (VT), driving

pressure (ΔP), airflow (V′), respiratory rate (RR), and positive end-expiratory pressure
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(PEEP) [2]. Others depend on the patient’s respiratory system or on the

patient-ventilator interaction, such as peak and plateau pressures, as well as ΔP.

VILI represents the unwanted result of a complex interplay among various mechan-

ical forces, which act on lung structures, such as type I and II epithelial cells, endothe-

lial cells, macrophages, peripheral airways, and extracellular matrix (ECM), during

mechanical ventilation [1, 2]. The main mechanisms that can lead to VILI are direct

damage to the alveolar capillary membrane and ECM, and mechanotransduction, which

is the conversion of a mechanical stimulus into intracellular biochemical and molecular

signals. The degree of both direct damage and mechanotransduction may depend on

the amount of power transferred from the mechanical ventilator to the patient’s lungs.

In turn, the degree of power transfer depends on ventilatory parameters adjusted by

the operator at bedside [2].

What is energy transfer from the respiratory muscles or mechanical
ventilator to the patient’s lungs?
The energy expended to move the lungs from their resting position (i.e., functional re-

sidual capacity) to a given point of the pressure-volume (PV) curve can be provided by

muscle contractions generating muscular pressure, as observed during spontaneous

breathing, or artificially by a mechanical ventilator that generates airway pressure

(Paw). Two of the first studies which calculated mechanical energy were done in infants

with bronchopulmonary dysplasia, by measuring the area under the PV curves during

spontaneous breathing [4, 5]. One demonstrated a positive association between increase

in mechanical energy and increased lung elastance and airway resistance [4], while in

the second, infusion of methylxanthines and diuretics [5] was followed by a decrement

in mechanical energy. In physics, mechanical energy is the sum of potential and kinetic

energies. This theoretical concept is applicable to respiratory physiology. In this con-

text, mechanical energy depends on the position where the inspiratory effort starts

within the respiratory system PV curve and on the driving force exerted by the respira-

tory muscles to generate chest wall movement. In the last 3 years, the concept of mech-

anical energy gained new attention from the critical care community when it was

recognized that ventilator parameters can interact with forces acting on the lung sur-

face and contribute to VILI [3, 6–8]. The mechanical ventilator can replace, partially or

completely, the effort done by the respiratory muscles, but at the cost of increased air-

way pressures. These, in turn, must overcome the elastic and resistive forces of the re-

spiratory system to generate movement (kinetic energy fraction), whereas the static

component (potential energy) is reflected by the PEEP level, which in fact represents

the baseline tension of the respiratory system (assuming a relaxed system without

muscle activity).

How is mechanical power calculated?
The amount of energy transferred from the ventilator to the patient is measured in

joules (J), while power is defined as the amount of energy transferred per unit of time

(J/min). There are at least three different ways to calculate mechanical power (energy

per breath times respiratory rate) with different degrees of complexity. The first

method is based on an analysis of quasi-static PV curves of the respiratory system. Esti-

mation of mechanical power with this method is largely dependent on the technique
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used to perform the PV curve. Under low-flow conditions, the influence of the resistive

properties will be reduced, and the elastic properties of the respiratory system will be

the main component of the mechanical energy calculation. Figure 1 shows an experi-

mental quasi-static PV curve from 3 to 30 cmH2O performed with a flexiVent® mech-

anical ventilator (SCIREQ, Montreal, QC, Canada). The total area of the rectangle,

obtained by multiplying the volume difference (ΔV) by the pressure difference (ΔPRS)

was determined [270 mL cmH2O or 26.5 mJ]. The area under the curve was then calcu-

lated as the integral of the pressure with respect to volume (174 mL cmH2O or 17.1

mJ) and subtracted from the total area of the rectangle, yielding the white area, which

corresponds to energy transfer (96 mL cmH2O or 9.4 mJ). To convert from mL cmH2O

to joules, all variables should be transformed to SI units, in which 1 mL would corres-

pond to 10−6 m3, while 1 cmH2O would correspond to 98.1 Pa. As Pa m3 = J, 1

cmH2O mL would correspond to 98.1 × 10−6 Pa m3 or 98.1 × 10−3 mJ. This value (en-

ergy), multiplied by the respiratory rate, gives power. Using this method, the potential

energy generating static strain in the respiratory system (PEEP) is not considered.

In the second method, the calculation of mechanical power includes both the resist-

ive properties (endotracheal tube/airways and tissue resistance) and the variation of

lung volume correspondent to the PEEP level (Fig. 2) [3, 6]:

Power;RS ¼ 0:098� RR

� ΔV 2 � 0:5� E;RS þ RR� 1þ I : Eð Þ=60� I : E� Rawð Þ þ ΔV � PEEP½ �� �

The major advantage, according to the authors who developed this mathematical de-

scription of mechanical power, is that it enables the quantification of the relative contri-

bution of its different components (VT, RR, ΔPRS, PEEP, I:E, airflow) and may predict

the effects of their changes [3]. The partitioning of mechanical power components was

done increasing one parameter while keeping the others constant. As pointed out by

the authors themselves, the effects of each component on power are not always predict-

able in clinical practice, because in several conditions, changing one parameter will

Fig. 1 Experimental quasi-static PV curve from 3 to 30 cmH2O performed with a flexiVent® mechanical
ventilator (SCIREQ, Montreal, QC, Canada). The total area, obtained by multiplying the volume difference
(ΔV) by the pressure difference (ΔPRS) during the maneuver, was determined (270 mL cmH2O). Then, the
area under the PV curve was calculated (174 mL cmH2O) and subtracted from the total area, yielding the
white area (96 mL cmH2O)
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necessarily modify others (e.g., if VT is reduced, RR is typically increased to maintain

constant minute ventilation).

The third method to calculate mechanical power is performed by implementing

intra-tidal inspiratory pauses (Fig. 3). This calculation does not take into account the

resistive component or PEEP level and has been considered a simplification of the sec-

ond method mentioned above. This equation computes the most important component

(driving mechanical power) [9], because although peak airway pressure has been shown

to be important in experimental models, the excursion of tidal pressure seems to be

more important [10]. The net effect of increasing PEEP level in terms of outcomes dur-

ing mechanical ventilation may depend on its ability to increase the lung surface area,

which will decrease the excursion of tidal pressure, and the mechanical energy transfer

from ventilator to lung.

Several studies have computed the ΔPRS instead of ΔP,L. However, ΔPRS comprises

the effects of both the lung and chest wall, as well as abdominal stiffness, which can be

relevant in critically ill patients [11]. ΔP,L was calculated by subtracting transpulmonary

pressure at end-inspiration—i.e., the difference between the pressure in the alveoli and

the pressure in the pleural cavity (chest wall)—and at end-expiration.

Mechanical power and diseased lungs: what about normalization?
The major determinants of VILI are volutrauma and atelectrauma [2, 12]. By measuring

the extent and distribution of inflammation with [18F]-fluorodeoxyglucose uptake in two

experimental models of VILI, Güldner et al. showed that volutrauma causes greater in-

flammation than atelectrauma [13]. In a comment to this study, Tonetti et al. [14] used

the average values to compute the mechanical power delivered to the respiratory system

in the two groups. In the volutrauma group, the average mechanical power to the respira-

tory system was 17.12 J/min, higher than that computed in the atelectrauma group (7.13

J/min). The major parameter differing between volutrauma and atelectrauma groups was

Fig. 2 Mechanical power calculation, which includes the resistive properties and variation of lung volume
correspondent to PEEP level. All components are depicted below the schematic figure: elastic, resistive, and
PEEP volume
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the PEEP level; VT and RR were comparable. Nevertheless, whether mechanical power

should be normalized considering the available lung surface which will absorb it is still a

matter of debate. Although the question remains unanswered, some insights are available

from post hoc analyses. The first derives from the fact that mechanical power can be nor-

malized to the lung tissue mass available for ventilation; the nomenclature “intensity” was

proposed for this parameter [13]. For a given mechanical power, intensity is higher in

lungs with fewer ventilated areas, as well as at the interface between lung zones with dif-

ferent mechanical properties [15]. Figure 4 depicts the interaction of a given mechanical

power with baseline lung conditions. If the lung surface able to accommodate the mech-

anical power transfer is large, VILI is less likely to occur. On the other hand, if the lung

surface is small, VILI is more likely to develop for the same mechanical power delivered.

Not only the lung surface is important to VILI progression, but also the open/closed inter-

faces, which have been associated with high [(18F)FDG] uptake, increasing proportionally

to the severity of the lung condition [16]. Therefore, both the total area to be ventilated

and the inhomogeneous poorly inflated or uninflated compartment represent important

parameters to be monitored and used for normalization of mechanical power transfer.

The damage threshold has yet to be defined for humans. In this line, in a secondary ana-

lysis of patients enrolled in two previously published randomized controlled trials, namely

Acurasys [17] and Proseva [18], Guerin et al. [19] attempted to define a safe threshold for

Fig. 3 Representative curves of transpulmonary pressure (P,L), tidal volume, and volume-P,L curve. VT, tidal
volume; ΔP,L, transpulmonary driving pressure; Est,L, static lung elastance. Mechanical energy (Energy,L) was
calculated based on the equation described by Guerin et al. [19] and the simplified formula of Marini and
Jaber [9] as Energy,L =ΔP,L2/Est,L =ΔP,L2/(ΔP,L/VT) =ΔP,L × VT, which is the area of the rectangle. Therefore,
one must compute the area of the rectangle and divide the result by two. This simplified equation
estimates elastic work without taking into account resistive properties and PEEP
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mechanical power. Using the most simple method to calculate mechanical power

(VT × ΔPRS × RR), the authors found that mechanical power above 12 J/min was as-

sociated with reduced survival. This threshold was similar to that detected in a pre-

vious study done in large animals [6]. Recently, Serpa Neto et al. performed a post

hoc analysis of data from 8207 critically ill patients admitted to the ICUs of 59 hos-

pitals in the USA in order to examine the association between mechanical power

and in-hospital mortality [20]. They found that high mechanical power was inde-

pendently associated with higher mortality in ICU patients who received invasive

ventilation for at least 48 h.

As long as mechanical power is low, can I modify ventilator settings? Theory
vs. practice
Each component of the mechanical power equation has its own weight for the final calcu-

lation. In an elegant previous study [3], the authors ran several computations by changing

one variable at a time while keeping all others constant. They showed that when VT was

increased by 20%, mechanical power increased by 37%. In an experimental model of

endotoxin-induced ARDS in rats, at low mechanical power, high VT was associated with

VILI [7]. The authors emphasized that control of VT seems more important than control

of RR. In this study, maintaining low mechanical power (~ 75mJ/min) did not prevent

lung damage when VT was high (22mL/kg). Additionally, multiple linear regressions were

compared to the overall mechanical power. VT predicted changes in IL-6 better than the

pooled mechanical power construct did (r2 = 0.71 vs. 0.19, respectively), while for diffuse

Fig. 4 a, b Interaction of a given mechanical power with baseline lung conditions. If the lung surface
(encompassing both aerated and non-aerated areas) able to accommodate the energy transfer is high, VILI
is less likely to occur. On the other hand, if the lung surface is low, VILI is more likely to develop for the
same mechanical power delivered by the mechanical ventilator
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alveolar damage, their predictive capacities were comparable (r2 = 0.46 vs. 0.47). In other

words, in a condition of low mechanical power, VT should still be kept low, as it is itself

capable of causing lung injury.

Mechanical power also increased by 37% when inspiratory airflow was increased by

20% [3]. In the previous experimental study done in large animals [6], mechanical

power was increased from 2 to 22 J/min by increasing RR and inspiratory airflow. In-

creased RR at a similar VT range has been associated with lung damage in experimental

conditions [21] and with hemodynamic impairment [22]. Inspiratory airflow is closely

associated with shear stress at the top of the cells within the respiratory bronchi. Some

reports have associated inspiratory flow profiles with gas exchange, work of breathing,

and cardiovascular functions [23–25]. Not only is inspiratory airflow associated with

major physiologic consequences, expiratory flow is also an important indicator of

changes in lung mechanics as acute lung injury progresses. Expiration is a passive

process that uses elastic energy stored during inflation to drive airflow. If the potential

energy stored after inspiration is low and not sufficient to return the system to a re-

laxed equilibrium before the next inspiration begins, flow continues throughout expir-

ation and the alveolar pressure remains positive at end-expiration, exceeding the

clinician-selected PEEP value [26]. In fact, this has been emphasized by a recent editor-

ial [27] about how sudden deflation from a high airway pressure has the potential to

trigger lung damage from a vascular point of view [28]. Under such conditions of high

potential for high kinetic energy transfer, vascular flows and pressures are powerful de-

terminants of VILI, especially in fragile, diseased lungs. This mechanism may contrib-

ute to lung heterogeneity, which may play an important role at the micro level [6].

Although no experimental studies have assessed modification of inspiratory or expira-

tory airflow while keeping mechanical power low, it is likely that alterations in airflow

would induce lung damage.

According to a previous theoretical study, mechanical power was only increased by 5.7%

when PEEP was increased by 20% [3]. The rationale to include PEEP as a component of

mechanical power is that, at FRC, the lung is already partially stressed and strained; with

PEEP application, there is an increase in lung volume corresponding to an increase in

end-expiratory lung volume (EELV) and to an increased end-expiratory transpulmonary

pressure, but in a static condition. This pressure is stored in lung structures as potential en-

ergy [29]. This fraction of static strain can be very prominent and may cause lung damage

when compared to dynamic strain. It should be pointed out that lung inflation requires a

further increase in transpulmonary pressure, which will reflect the dynamic strain related to

the respiratory cycle. In most ICU ventilators, work-of-breathing computations do not in-

clude PEEP or EELV, since PV curves start from point (x, y = 0, 0). Although PEEP has less

weight in mechanical power calculations than VT, airway pressure, or inspiratory airflow,

the authors justify its presence in the mechanical power formula because it is associated

with the potential fraction of mechanical energy, which by definition must be computed for

total mechanical energy calculation. Nevertheless, the effect of PEEP level goes further than

simply entering in the mechanical power calculation. By changing the EELV, PEEP has the

ability to modify the lung surface area able to receive the stress released by the mechanical

ventilator. In fact, the effect of mechanical power on respiratory system mechanics may de-

pend on the recruitability of the patient’s lungs. If an increase in PEEP will lead to a decrease

in driving pressure and respiratory system elastance, mechanical power will ultimately
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decrease, and vice-versa: if an increase in PEEP level fails to reduce or even increases driving

pressure and respiratory system elastance, mechanical power will increase because of im-

pairment of respiratory system mechanics due to overdistension of alveolar units.

Mechanical power may also differ according to the mode of mechanical ventilation

(pressure-controlled ventilation (PCV) or volume-controlled ventilation (VCV)), even

when ventilator settings are the same. Mechanical power is probably higher in VCV

than in PCV, as suggested by the illustrative diagram shown in Fig. 5: in PCV, peak

pressure is equivalent to plateau pressure, while in VCV, peak pressure is higher than

plateau pressure due to the resistive component. However, it is still unclear whether

the resistive and elastic components of power have the same biological impact. In short,

the type of ventilation should be taken into account when evaluating the effects of

mechanical power on lung injury.

Current knowledge on the concept of mechanical power has limitations that should be

addressed in future studies. First, all studies to date have focused on VCV. It would be of

interest to investigate the effects of other ventilation modes, particularly pressure-controlled

and assisted ventilation. During assisted ventilation, mechanical power is provided by the

Fig. 5 Mechanical power during volume- and pressure-controlled ventilation. Top panels represent the
typical pressure-time curve of these two controlled ventilation modes; middle panels, the flow-time curves;
and bottom panels, the weight of different power components in the two ventilation modes. VCV, volume-
controlled ventilation; PCV, pressure-controlled ventilation
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mechanical ventilator in tandem with the respiratory muscles [30]. New theoretical [31] and

experimental [32] studies have dissociated the mechanical power imparted by the machine

and that imparted by the respiratory muscles during assisted mechanical ventilation. How-

ever, further studies are needed to definitively determine mechanical power during assisted

ventilation. Second, the relative weight and the interaction between different mechanical

power components in real-world settings have yet to be determined. Finally, the micro-

scopic mechanisms of energy transfer and the role of different anatomical areas of the lung

and different cell lines remain unclear.

Conclusions
The degree of lung damage in VILI can be linked to the amount of energy transferred from

the mechanical ventilator to the respiratory system within a given timeframe, a construct

known as mechanical power. There are several ways of calculating mechanical power, from

simple formulas to highly complex equations. All have distinct benefits and shortcomings;

some compute static mechanical energy and resistive pressure, while others disregard these

parameters. Regardless of the way in which mechanical power is calculated, it is worth stres-

sing that not all alveolar units will be exposed to it. Therefore, efforts should focus on nor-

malizing mechanical power to the lung surface area amenable to ventilation. The

recognition that mechanical power may reflect a conjunction of parameters which can pre-

dispose to VILI is an important step toward better care of critically ill patients.
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